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ON THE PULSE NUMBER DURING OPTIMAL TRANSFER BETWEEN

CLOSE KEPLERIAN ORBITS

V. A. Antonov and A. S. Shmyrov

In calculating optimal transfers between Keplerian orbits, /165
we are previously given the maximum number of pulses, usually no

more than three. Therefore, the question remains open as to

whether an increase in the number of pulses can reduce the value

of characteristic velocity. The solution of the problem on the

most profitable method of transfer, when not only the pulse para-

meters but their number is optimized, can not be derived by a

simple selection of all minimums. In such statement, the problem

requires the application of methods of optimal synthesis associa-

ted with the principle of the maximum [1].

1. Statement of the Problem

Given xi (i = i,..., 5)--elements of 3a Keplerian orbit; and

given at some p6int is applied an infinitely small pulse with a

characteristic velocity equal to dv. Then increases in dxi of the

elements of the orbit will have the form

d x1=fi(x. -1, -, a3, T)dv,

where x = (x l,..., x5 ); al, a2 , a 3--direction cosines of the

pulse;p--true anomaly of the point of application of the pulse.

Switching to a differentiation with respect to the charac-

teristic velocity v, we can formula the problem of pulse transfer

between orbits in the form of a problem of speed of response

fl (X. a , 1 , a3, T~1



The direction parameters are direction cosines and true anomaly;

the phase coordinates are orbital elements; the argument--charac-

teristic velocity. The range of control is defined by the rela-

tionships

al+a2+2=l, -- C < <'"

Let us solve the problem assuming that

fi (X, aI, a2. a3, ')=f (Xo, al, a2 as, ') (1.2)

where x are elements of the initial orbit, i.e., that f. is not

dependent on the phase coordinates. This approach corresponds to

a transfer between infinitely close orbits.

2. General Case /166

Following the principle of the maximum [1], let us intro-

duce auxiliary variables Xi and write the Pontryagin function

5

11= 2 xi/ ,
i (2.1)

5

wherein Z t . Due to condition (1.2), the values of will

be constant. The number of pulses which are used for the transfer

is equal to the number q of different combinations of aI , a2, a3,
, providing functions H with given Xi and x0 with an absolute

minimum.

Let us aim at defining the function

p(x)=maxq(X. xo), rae =(, . . )

Let us define the elements x. as follows:1
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where p--field constant; q--semimajor axis of the orbit; p--

focal parameter; p0--focal parameter of the initial orbit; e--

eccentricity; q--length of ascending node; w--latitude of the

pericenter; y --orbital inclination.

The system of coordinates will be selected so that the

inclincation of the initial orbit is equal to 7/2, and the lati-

tude of the pericenter is zero. Then system (1.1), due to con-

dition (1.2)', will have the form

= - e (l--e2)- I
f

2 sin pzI -0~(-e) - 2 (I +e cos-) a2,

dr
d - (1 +e cos 

()-2 3)

-dw,- (-e2)1/2 COS pa1+ (--e2)112 (1 +e cosyp)- 1 (2+e cos p) sin (2. 3)

dx (I +e cos )- sin yes,

dx 5
dv (I+e cos )-1 cos Tcs.

Let us note that the right sides of (2.3) depend only on

the control parameters and eccentkicity of the initial orbit; con-

sequently, p(x0) = p(e0)

Let us now write the Pontryagin function

I-=-k (I-e - 1/2 (e sin pa,1+(I +e cos ?) a-4 (I +e.cos y)-' --

--A3 (1--e )l
/2 (cos pal--sin p (I +e cos c)-' (2+e cos p) a5)+

+XI (1 +e cos ()- sin M+k (I +e cos )-' cos gTa. -

(2.4)
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since + a2 + a = 1, then

M (, , e)=( max n) =--

=Xh (I-e2)-1 ( +2e cos P+e2 )+i,X 2 (1-_e/2+

/167

+) (I +e cos f)-l-4X.k3 sin r-2z, 1 (1 -e)'1 2 (I +e cos r)-2 (2 + e cos T) sin / +
+X23 (1-e 2 ) (1 +e cos 9r)-2 (4+ l/e cos c+(e-3) cos 2 cp-2e cos r)+

+( 4 sin y+,5 cos y)2 (1 +e cos )-.

(2.5)

The quantities al, a2, a3 are defined uniquely, as soon as

# is defined. Thus, the problem was reduced to an explanation of

how many different values of 0(- < <, 'r ) can provide functions

M at given e and S with an absolute maximum.

Let us define c = max M. Let us consider the equation with

respect to #:

M--c=O.
(2.6)

Given -<7<w. With the aid of the statement

1-- s 2y
cos 1-= +y 2

' i y (2.7)

equation (2.5) is reduced to an equation of sixth power with re-

spect to y. Each real root of this equation is at least double

(by definition c)./ Consequently, the number of different real

roots is no more than three.

PNow let functions of M be.provided with a maximum of = r.

In this case, permutati on of (2.7) leads to equation of the :.

fourth power and consequently, again p(e) < 3.
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Let us show that p(e) = 3 if 0 < e < 1. We will assume that

1 =e-l 1/ 2 (+ e)-12 1/2121

)a=e-12 (1112 /1-2 2

,=e12 (l +e)j (I + )112 (3+2e+B)12,

(2.8)

where

-e<<-2e+I. (2.9)

We can verify that due to (2.9), the radicahds'.appearing in

(2.8) are positive; moreover, the values of c =,0, = arccos

(6/e), p= -arccos(6/e) give function M an absolute maximum.

3. Coplanar Transfer

Assume that

(3.1)

then a3 = 0, which corresponds to a coplanar transfer. Let us

designate that

m(e)=max q ( , 0x,, , O0, e). (3.2)

Apparently, m(e) < p(e). For precise definition of m(e), let us

again apply in the interval -rw<<w the permutation of (2.7) which

with allowance for (3.1) brings equation (2.5.) again to an equa-

tion of the sixth power. If this equation has three double roots,

the corresponding polynomial is a complete square of the poly-
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nomial of the third power. This condition permits. us to define
S' 2 3 with an accuracy to within the constant coefficient,

and the polynomial of the third power has the form

: (5+t) y+2(l+t)112 y2+(2+5t-p) y+(8+4) (I +t)112=0 (3.3)

where t = (1 + e)/(l - e), bt.r: differs from (3.3) only by replace-

ment of y by -y. The discriminant of equation (3.3) within un. '-

essential coefficients is equal to

1 -_ J (3.4)

and changes sign when t* = 25.665... When t < t*, as is easily /168

seen in the case of t = 1, equation (3.3) has a pair of complex

roots. Thus, m(e) = 3 only for e > e*, where e* = (t* - l)/(t* +

+ 1) = 0.925.... For completeness, let us note that if # = 7

was one of the values providing the maximum M, the prpblem by

analogy would reduce to representation of a polynomial of the

fourth power in the form of the square of a polynomial of the sec-

ond power, but no corresponding- set of: essntial, :1, ,' 1 3 exists.

When e < e*, m(e) = 2, since for non-intersecting orbits the

optimal transfer is at least two-pulse, and it can not be three

pulse as proven.

In the work of Krasinsky the fact is noted that pulses mak-

ing up a three-pulse transfer must be applied in strictly fixed

points of the orbit, but the region itself of threepulse transfers

could not be found. This is understandable since the Krasinsky

method is based on the decomposition by,powers of e, and e*, as

we have seen, lies even beyond the Laplace limit.
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